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Abstract: With the advances in the field of VLSI design, routing a net the basic function of Global routing and 

Detailed routing stages of Physical design are required to be conducted at the earliest. Many efficient algorithms are 

proposed to construct the Rectilinear Steiner Minimum Tree (RSMT) which routes the net and can be used in the 

estimation of wire-length and timing for Floor-planning and Placement stages of IC-design. RSMT connects the 

terminals of a net rectilinearly without considering the presence of obstacles in the routing region, but blockages like 

pre-routed nets, macro-cells, IP-blocks and others cannot be ignored as they form the major components of the routing 

area. This leads for the construction of an extended RSMT called Obstacle Avoiding Rectilinear Steiner Minimum Tree 

(OARSMT), many exact and heuristic algorithms are proposed for the construction of OARSMT based on approaches 
like Geo-Steiner, Look-up table, Extended-Hanan grid, Maze routing and Spanning graph. This paper discusses 

OARSMT algorithms that belongs to different approaches and makes a comparative study of the features and 

performance of OARSMT designs. Making way for the selection of the key features of the existing algorithms and to 

improve them in the new designs of OARSMT, to match with the current VLSI technologies. 
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I. INTRODUCTION 

In VLSI design, construction of Rectilinear Steiner 

Minimum Tree (RSMT) plays a very important role, as it 

is used in Global Routing and Detailed Routing stages of 

the Integrated-Circuit Physical design. RSMT is also used 

for estimating - wire-length, timing and congestion during 
Floor-planning and Placement stages. Many efficient 

algorithms and approaches are designed for the 

construction of RSMT, but they have not considered 

blockages present in the routing region. In the modern IC 

designs rectilinear blockages like Macro cells, IP blocks, 

pre-routed nets, etc will be always present in the routing 

area. Therefore construction of RSMT in the presence of 

blockages becomes a more fundamental and practical 

problem and it is called as Obstacle Avoiding Rectilinear 

Steiner Minimum Tree (OARSMT). OARSMT problem 

connects a set of terminal pins using rectilinear edges 
avoiding rectilinear obstacles using a set of additional 

points called Steiner points on a 2-D plane. Fig.1 shows 

an ORSMT. Distance between two points is measured in 

Manhattan distance, given by d(p1, p2) = |x1- x2| + |y1- 

y2|. In [3] RSMT problem has been proved to be NP-

complete, this implies that OARSMT 

Problem cannot be solved in polynomial time and is 

expected to have exponential time in worst cases. Many 

Exact and Heuristic algorithms are designed to solve 

OARSMT; they are discussed under different design 

approaches in this paper. 

Rest of the paper is organized as follows; Section II 
discusses various OARSMT designs under two major 

headings like Rectilinear Complete Graph (RCG) and 

Non-Rectilinear Complete Graph (NRCG).Section III,  

 

 

presents a table that summarizes the features and 

performance of OARSMT designs. Section IV, concludes 

the comparative study. 

 

 
 

 

 

 

 

 

 

 

 

 

 

Fig.1 OARSMT connecting terminals avoiding Rectangular Obstacles. 

[19] 

 

II. OARSMT Design approaches 

While constructing an OARSMT, the very initial step is to 

interconnect terminal pins and corner points of the 

obstacles to form a Complete Graph. OARSMT design 

approaches differ in the construction of the Complete 

Graph. Complete graph can be of two types, Rectilinear 

Complete Graph (RCG) and Non-Rectilinear Complete 
Graph (NRCG).  

1. OARSMT design approaches based on Rectilinear 

Complete Graph (RCG) 

Hanan grid [1] forms the basis for all types of Rectilinear 

Complete Graph whose edges are rectilinear in nature. 

Some of the RCGs are Escape graph, Track graph, Virtual 

graph, Grid-graph of Maze routing, etc. 

1.1 Escape Graph/ Extended Hanan-Grid 
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It is a strong connection graph constructed by extending 

horizontal and vertical lines from terminal pins and 

obstacle boundaries as shown in fig.2 (a). Escape graph 

has O(n2)  vertices in worst case and most of the edges 

and vertices are redundant. Escape graph guarantees a 

good OARSMT for a multi-terminal net. OARSMT 
designs based on Escape graph are discussed below. 

 
Fig.2 Rectilinear Connection Graphs (a) Escape graph (b) Track graph. 

[20] 

[10] Presents a model that provides both exact 

and heuristic solution to route multi-terminal nets. Model 

transforms OARST, a Geometric problem into a Graph 

problem, whose size is a function of input size rather than 

the routing area, unlike Maze routing which optimally 

routes two terminal nets , but time and space usage 

corresponds to the size of the routing area. Exact 

algorithm based on Escape graph routes multi-terminal 

nets with three or four terminals, time required for 

generating Escape graph is O(max{n,mlogm}) where n is 

the number of escape segment intersections, m is the 
number of obstacle boundary segments. For nets with five 

or more terminals, K-Steinerization algorithm 

heuristically computes Obstacle Avoiding Steiner trees by 

replacing MST with K adjacent terminals with an optimal 

Steiner sub-tree. OARST problem is solved by G3S and 

G4S. Batching technique speeds up Steinerization 

heuristics. Worst case Steiner ratio (ratio of length of 

MST to length of optimal Steiner tree) of OARST is 2. 

Analysis and experiments show that algorithms work well 

in both theory and practice. 

[17] Propose a two step Escape graph based 

O(mn) heuristic for multi-terminal tree construction. 
Step1 constructs a RSMT without considering the 

obstacles. Step2 with four processes transforms the 

primary tree into RSMTO. Edges of the primary tree 

overlapping with obstacles is removed, rectilinear short 

paths reconnect the edge vertices by going around the 

obstacles. Post processing improves the solution quality 

by removing cycles and U-shape paths. On an average 

5.31%, redundant paths are generated. Algorithm has 

good wire-length and runtime is within 1sec for all cases. 

1.2 Track Graph 

Track graph is a variant of Escape graph, where 
rectilinear lines extend from terminals and Extreme edges 

of obstacles as shown in fig. 2(b).  The number of vertices 

and edges in a track graph is O(e2), where e is the number 

of extreme edges of all obstacles. Track graph is not a 

strong connection graph, as optimal solution cannot be 

found in some cases. OARSMT design based on Track 

graph and ACO is discussed below. 

An OARSMan[20] is a Track graph based non 

deterministic heuristic. Search space of Track graph is 

reduced by T-reduction method. ACO is used to 

interconnect the terminals on the track graph optimally, 

by placing ant on each terminal, a greedy metric Obstacle-

Penalty distance estimate the distance between two 

terminals in the presence of obstacle. An OARSMan is 

better than FORst and gives good length performance for 
small scale cases. 

1.3 Geo-Steiner approach 

GeoSteiner package finds optimal solution for RSMT 

problem and is used as measuring Standard against which 

proposed methods are compared to determine how far-off 

they are from optimum. RSMTs are unions of Full Steiner 

Trees (FSTs) in which every pin-terminal is a leaf. FST 

forms the basis for Geo-Steiner framework; it considers 

subsets of pins at a time. FST generation and FST 

concatenation are two major steps of framework. FST 

generation step uses algorithm proposed in [14] to grow 
FSTs, which applies several optimality conditions to 

eliminate some FSTs that cannot be part of any RSMTs. 

Running time of this step, is quadratic and 4n FSTs are 

generated on average for random instances. [12] proposed 

that FST concatenation step is equivalent to MST problem 

on a Hyper-graph with the vertex set V of pins and 

subsets spanned by FSTs as hyper-edges; this can be 

formulated as an Integer Linear Program (ILP) and solved 

using Branch-and-cut search. 

OARSMT designs based on Geo-Steiner framework, with 

suitable modifications done on two phases is discussed 

below. 
[13] Presents an Obstacle-Avoiding Euclidean 

Steiner tree (OAEST) problem, the first exact algorithm. 

It uses a two phase framework, Generation and 

Concatenation of FSTs. FST Generation uses Equilateral 

point generation strategy, all possible FSTs are generated 

for Subsets of terminals, and shortest one is retained. 

Several tests are applied to prune away FSTs that cannot 

be in any optimal solution. Surviving FSTs are 

concatenated to obtain trees spanning all terminals. FST 

Concatenation is formulated as a Steiner Minimum Tree 

Problem of a Hyper-Graph (SPHG) with terminals and 
obstacle corners as vertices and Hyper-edges are equal to 

the length of corresponding FSTs. ILP solves the MST 

problem in Hyper-graphs. Results show that, moderate 

instances with up to 150 terminals are solved optimally 

within few hours of CPU-time. 

[33] Extended Geo-Steiner approach to allow 

rectilinear blockages in routing area. FSTs are generated 

after four Virtual pins (at corners of blockage) are added 

to terminal set. Proofs on the structure and topologies of 

FST in [2] are extended to allow blockages as shown in 

fig.3. Potentially useful FSTs are generated by following 

methods of [14], FSTs to be part of the OARSMT pass 
the necessary conditions like, bottleneck Steiner distance, 

empty-diamond property ,empty corner rectangle property 

defined in[14]. In FST concatenation step, ILP select and 

concatenate subset of FSTs to construct an optimal 

OARSMT. Algorithm handles hundreds of pins with 

multiple blockages, generating an optimal solution in a 

reasonable amount of time. Results show that running 

time of the algorithm is combination of the FSTs 
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generation time and the time for solving ILP, which 

dominates the running time. 

 
Fig.3 Structures of FSTs among obstacles. (a) Type I (b) Type II (c) 

Type III (d) Type IV structure. [41] 

[37] Developed a two phase approach based on 

GeoSteiner. Four virtual terminals were added to each 
rectangular obstacle this makes structures of FSTs with 

obstacles same as FSTs without obstacles. This provides 

theoretical support for using GeoSteiner approach to 

generate OARSMTs. In FST generation phase, Pruning 

process reduces the number of virtual terminals by 

constructing a Reduced-Escape graph and reduces the 

number of FSTs. FSTs with exactly two terminals are 

constructed according to lemmas proposed by  [16] and 

[4]. New IP formulation for the concatenation of FSTs 

with blockages is proposed and solved by branch-and-cut 

search, which includes Separation algorithm to adapt to 

the presence of virtual terminals, framework‟s lower 
bounds are provided by LP relaxation. Approach handles 

100s of terminals and obstacles, generating optimal 

solution. 

ObSteiner[41] an exact two phase algorithm, 

solves OARSMT problem among complex obstacles 

using Geometric approach. Optimal solutions are 

constructed by the concatenation of FSTs by the extended 

Geo-Steiner approach in the presence of obstacles. To 

simplify the structure of FSTs, Single Virtual terminal is 

added on Essential edge of each obstacle. Virtual graph is 

constructed from terminals, virtual points and boundaries 
of obstacles. It is a strong and smaller connection graph 

compared to Escape graph. OARSMT can be partitioned 

into a set of FSTs by splitting at terminals or virtual 

points with degree more than one. In the FST generation 

phase Pruning procedure with four tests are performed to 

eliminate FSTs that cannot be part of an optimal 

OARSMT. Survived FSTs are concatenated through ILP. 

ObSteiner adopts the Incremental construction approach 

to check for obstacles that overlap with the solution, the 

procedure repeats until no more obstacles overlap with 

final OARSMT. Instances with 100s of terminals and 

obstacles are solved optimally. 

1.4 Maze Routing/Lee’s algorithm  

Maze-running one of the Shortest Path (SP) algorithms is 
characterized by target-directed grid propagation. Lee‟s 

algorithm an instance of Maze routing applies Dijkstra‟s 

breadth first shortest path search on uniform grid-graph. 

Its drawback is that it requires O(mn) memory and time 

for a grid of m x n and each node requires O(log L) bits, 

where L is the length of shortest path from source to 

target. Node labeling is the main operation of Maze-

routing. Nodes of grid G are labeled from source until 

target node is labeled and then a path is extracted between 

them with node labels, as shown in fig.4. Maze routing 

optimally routes two-pin nets, its run time and space is 

proportional to the size of routing area rather than the 

actual problem size. 

  
Fig.4 Node labeling/Wave propagation in Maze routing. [40] 

OARSMT designs based on Maze Routing with suitable 
modifications are discussed below. 

[11] Provides a framework for a class of algorithms that 

solve Shortest Path related problems like one-to-one, one-

to-many and MST problem in the presence of Obstacles. 

A sparse strong connection graph forms the search space 

and its searched portion is constructed incrementally on-

the fly using A* heuristic search. Algorithms time and 

space depends on actual search behavior and as it does not 

construct the entire connection graph explicitly, this fact 

reduces the cost of VLSI design. One-to-many SPs and 

MST problem takes O((e+n+N)log(e+n)) time and 

O(e+n+N) space where e, is number of sides of obstacles; 
n is number of points in S and N the total number of 

visited grid nodes. 

[27] Propose a heuristic based on Maze routing that can 

handle- multi-pin nets, large scale cases and complex 

obstacles producing quality solution for run time and 

memory. Unlike the sequential traditional Maze routing, 

this method stores multiple paths between pins and then a 

MST method constructs final route globally. Propagation 

is made on a Simplified Hanan grid, heap data structure is 

used to implement maze routing step, post-processing 

further reduces wire-length. Results show that, on average 
an OARSMT with 2.01% less wirelength is generated and 

there is an improvement of 27.04% in wirelength 

compared with lower bound of optimal solution and 

shorter run time is achieved than [26]. 

[34] Presented a Modified Lee algorithm called as 

Weighted Lee algorithm that uses Extended Hanan grid to 

compute sub-optimal RSMTs and A new approach for 

reduction of the Routing area. Original Lee algorithm was 

applied to routing area of Unit-grids, Paper applies Lee 

algorithm to grids of varying lengths called as Weighted 

Hanan grid which solves situations of Concave boundary. 

Extended Hanan grid transforms the routing problem into 
a Graph problem, and the Weighted Hanan grid 

transforms the Computing scale from Routing area into 

the Input Size of terminals and obstacles. Minimum 

Convex Polygon MCP(V) of terminal set is designed to 

restrict Routing areas and to get rid of some parts of 

Hanan grid. Weighted Lee algorithm has three phases: 

labeling of vertices called as Filling or Wave propagation 

phase, Retrace phase and Updating phase. Algorithm 

runtime is O(n2(n+m)2log (n+m)) , where n is number of 

terminals, m is number of vertices of obstacles and 

boundary. 
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1.5 Path-based framework 

OARSMT problem solutions can be found by generating 

Critical paths without constructing the initial Routing 

graph which consumes large time and space. Path-based 

framework has global view of obstacles and provides 

potential ways to increase the overlapping between 
different paths.  

 
Fig.5 Critical paths connecting terminals and corners of obstacles. [31] 

[31] Proposed a O(nlogn) four phase Path-based 

algorithm, which generates O(n) Critical paths, that 

guarantees the existence of desirable solution. First two 

phases generate an Obstacle Avoiding Steiner Tree 

(OAST) using critical paths without constructing a 
routing graph or generating invalid solution as shown in 

fig.5. Critical paths are generated by bridging edges 

between adjacent Shortest Path Map regions which takes 

the information from Multi-source Shortest Path trees 

constructed based on wave-front method. A greedy 

method constructs OAST out of critical paths and 

attempts to increase the overlap between paths to improve 

solution quality. Slant edge transformations and dynamic 

local refinements construct the final OARSMT. 

1.6 Steiner point based framework 

If OARSMT designs does not focus on the generation and 
usage of good Steiner point candidates OARSMT 

problem will become an Obstacle Avoiding Rectilinear 

Minimum Spanning Tree (OARMST) problem, which can 

be solved in polynomial time. Steiner point -based 

framework gives more importance for the usage of Steiner 

points, which causes the NP-completeness of the 

OARSMT problem. This framework devices method to 

generate Steiner point candidates efficiently.  Framework 

can be extended to the practical generalizations of 

Multilayer OARSMT problem and Obstacle-Avoiding 

Preferred Direction Steiner tree (OAPD-ST) problem. 
[32] Presents a four step algorithm based on Steiner-point 

based framework, which focuses more on the usage of 

Steiner points while handling obstacles. In step1, Routing 

graph- Obstacle-avoiding Voronoi graph (OAVG) is 

constructed out of Steiner point candidates, pin-vertices 

and obstacle corners, with only O(n) vertices and edges. 

Desirable Steiner point candidates are generated by the 

new concept of Steiner point Locations instead of line 

segment intersection methods (viz. Hanan grid, Escape 

graph). In step2, Based on Prim‟s concept, Steiner point 

selection method first sets the farthest pin-vertex as 

source and selects good Steiner  points, Shortest Path 
Region (SPR), a subdivisions of plane forms the basis of 

Steiner point selection and it extends Dijkstra‟s algorithm 

to propagate vertices to find the current closest pin-vertex. 

In step3, Initial OARST is constructed from OAVG in 

O(nlogn) time by integrating MTST algorithm of [30] and 

path-overlapping scheme of [31]. In step4, Refinement 

scheme is applied on OARST to reduce the redundant 

segments in O(nlogn) time. Algorithm achieves best 

practical performance in both wire-length and run time, 

on average a speedup of 26.67 times is got and for the 

largest benchmark it takes only 1.565sec.  

[39] Extended the Steiner-point based framework of [32]. 
Step1 constructed A routing graph called Geodesic 

Voronoi graph in O(nlogn) time and  O(n) space, routing 

graph had multi-source Short Path Maps, the L-shaped 

Shortest Path Region of vertices located the Steiner point 

candidates. In step2, MTST constructed the OARSMT in 

O(nlogn) time. Final step used Liu‟s refinement method 

[31] to reduce wirelength. Time complexity of algorithm 

is O(mnlogn) in worst case and O(nlogmlogn) in average 

case, where m is the number of pin-vertices and n is the 

input size.  

1.7 Plane Sweep technique 
An xy-path monotone in both x and y direction with y-

direction–preferred or x-direction–preferred can be used 

to find the Shortest Path (SP) between two points 

avoiding horizontal and vertical blockages in L1 metric. 

RSP-RB [5] uses Plane-Sweep technique instead of Graph 

theoretic approach. Algorithm finds a SP between two 

points (source, target) avoiding rectangular barriers and 

the path is monotone in either x or y-direction. Time 

complexity is O (nlogn) where n, is number of barriers. A 

query form of the problem is also solved, given a source 

point and n- number of barriers, the shortest distance to 

query point avoiding barriers is found in O(t + log n) 
time, where t is the number of rectilinear turns in the path. 

2. OARSMT design approaches based on Non-

Rectilinear Complete Graph (NRCG) 

Non-linear data structure, Graph G (V, E) forms the basis 

of NRCG. Here G is an undirected graph, the vertex set V 

is a Unoin of terminal pins and corner-points of obstacles 

and edge set E has edges formed by connecting terminal 

to terminal or terminal to obstacle corner points. Spanning 

Graph based approach has two variations – Sequential 

approach and Connected Graph approach 

Sequential approach is a construction by correction 
method; it consists of two steps, step1, constructs MST 

without considering Obstacles. Step2, Transforms MST 

into a RSMT by substituting overlapping edges with 

edges around the obstacles. Industry uses this approach 

because of its simplicity. Drawbacks are, step1 does not 

have a global view of obstacles and paths so step2 

removes overlaps locally, quality of solution and wire 

length is limited. 

Connected Graph based approach first constructs a 

Connection graph from terminals and corner points of 

blockages as shown in fig. 6 which guarantees the 

presence of at least one OARSMT embedded in the graph. 
A Graph searching technique is then applied to find an 

optimal OARSMT. This approach has global view of both 

pins and obstacles and describes their geometrical 

relationship with few edges. Efficiency of the approach 

depends on size of the graph. OARSMT designs based on 

Spanning Graph and efficient Search techniques namely, 

Sweep-line algorithm, Ant Colony Optimization, 

Delaunay Triangulation and Look-up table; for improving 
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the performance of the designs at the early stages are 

discussed below. 

 
Fig.6 Complete Spanning graph interconnecting terminal pins and corner 

points of obstacles. [21] 

2.1 Sweep-line Algorithm 

Sweep-line algorithm [21] constructs a Spanning graph 

for vertex set V union of terminals and corner-points of 

blockages in O(nlogn) time. Algorithm makes only four 

passes over the search regions, shown in fig.7, each pass 

make edge connection in two regions simultaneously. 

Basic operation of algorithm is to maintain an active set 

of vertices in each pass. 

 
Fig.7 Search regions of (a) Rectangular blockage (b) Terminal pin. [21] 

RSMTRB [21] is a six step heuristic, it proposes an 
efficient and effective Connection graph called Spanning 

graph that contains only O(n) vertices and edges, 

Spanning graph construction is done by a O(nlogn) 

Sweep-line algorithm followed by the rectilinearization of 

the MST to get the final RSMT with Rectilinear 

Blockages. Results show that RSMTRB has reduction of 

12.081% wire-length compared to sequential approach 

with an increased runtime by only 48.44% on average. 

[28] Proposed a four step heuristic based on 

Obstacle Avoiding Spanning graph (OASG). First, a 

OASG with O(nlgn) edges is constructed using Sweep-
line algorithm of [21] but with more “essential edges”. 

Second, step to constructs OAST is as follows, Dijkstra‟s 

algorithm is used for shortest path computation between 

edges of OASG, then Prim‟s algorithm constructs an 

initial OAST, then a local refinement is applied to remove 

unwanted cycles of OASG and to improve performance. 

Third, an OARST is constructed by transforming slant 

edges to rectilinear edges by applying some rules. Finally, 

OARSMT is constructed by U-shaped pattern refinement 

and the removal of overlapping edges and redundant 

vertices. Algorithm has Empirical run time of O(n1.46 ), 
theoretical time complexity at worst case as O(n3) and 

random case as O(n2lgn). The average wire-length 

improvement over [21] in OASG construction is about 

3.69% and the overall improvement is about 5.79%. For 

large cases algorithm takes only 0.83s and achieves 

4.46% improvements over [21]. 

EBOARST [30] is a four step algorithm. firstly, a sparse 

OASG is constructed in O(nlogn) time by a Sweep line 

algorithm which makes only a 45 degree sweep on the 

Quadrant partition of the plane, a balanced binary search 

tree data structure stores the active edges. Secondly, 

MTST is constructed by selecting edges from OASG and 

a shortest path terminal forest is obtained, then an 

extended Dijkstra–Kruskal algorithm solves MTST 
problem in O(nlogn) time. Thirdly, an OARST is 

constructed from MTST by an Edge-based heuristic in 

batched-mode and it also handles the global and local 

Steiner tree refinement. Finally, on the rectilinearized 

OARST further optimization is done by a local refinement 

technique called Segment translation. Time Complexity 

of EBOARST is O(nlogn) and it achieves 16.56 times 

speedup on average. 

2.2 Ant Colony Optimization (ACO) 

ACO method takes its idea from Ant colonies, which 

exhibits cooperative and social behavior.  Ants 
communicate by secretion of Pheromone on the path. 

ACO achieves complex computations through multiple 

iterations; in each iteration one or more ants move leaving 

behind pheromone trail which evaporates at a constant 

rate. Tabu-list of ant has the record of visited vertices, 

when ant A meets ant B, A dies off giving its list to B. 

Designs for OARSMT which uses ACO, places ants on 

terminals [20] or on roots of sub-trees [25], which need to 

be interconnected. Ant m will choose to move on the 

Edge (vi, vj) which has a higher Pheromone Trail 

intensity and Desirability given by, 

 
FORst [19] is a three step heuristic, Partitioning of 

terminals, Hyper graph construction, OARSMT 

construction for each sub-graphs by ACO-RSMT or 

Greedy FST-RSMT then detouring to connect all sub-

graphs. FORst can handle both small and large scale cases 

with good performance.   
Fast and Stable algorithm [25] is a four step heuristic, it 

constructs MSTs for the partitioned terminals, discards 

the edges overlapping with obstacles thus forming a Set 

of Sub-Trees (SST), Merges SSTs optimally using ACO 

by placing ants on roots of each sub-trees, a greedy 

method Rectilinearizes the tree edges and Refinement 

removes redundant edges to improve wire length.  Results 

show that runtime is small for large cases and better than 

FORst, An OARSman, CDCtree. 

2.3 Delaunay Triangulation 

A Delaunay triangulation DT (P) for a set P of vertices in 

a plane is a triangulation such that no vertex in P is inside 
the Circum-circle of any triangle in DT (P) as shown in 

fig.8. In λ- Geometry, λ = 2, 3, 4, and ∞ it corresponds to 

Manhattan architecture, Y-architecture, X-architecture 

and Euclidean geometry. Academia and Industry are 

giving importance to λ- Geometry Routing (λ = 3, 4), as 

the total wire-length and crosstalk can be reduced 

drastically compared to Manhattan architecture (λ=2) thus 

improving the IC performance. 
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Fig.8 DT of terminals and corner points of rectangular Obstacles. [24] 

λ- OAT [24] presents an O(nlogn) heuristic for λ-

OARSMT construction in λ-geometry plane (λ=2), based 

on Obstacle-Avoiding Constrained Delaunay triangulation 
a fully connected tree is constructed which is then 

embedded into λ-OASMT by Zonal combination method 

(which unifies geometries). Compared with An-

OARSMan [20] and FORst [19], λ-OAT speedsup to 30-

Kx with quality solution. 

 2.4 Look-up table based approach 

Lookup tables with predefined or pre-computed values 

have always made job easier and faster. FLUTE [29] 

constructs RSMT very quickly and accurately based on 

pre-computed lookup table. Runtime of FLUTE is 

O(nlogn) for a net of degree n. Degree-n nets can be 

partitioned into n! groups according to the relative 
positions of their pins. To find optimal RSMT for a low 

degree net, compute the wire-lengths corresponding to the 

POWVs for the group the net belongs to and then return a 

minimum wire-length POST associated with that POWV. 

POWV (Potentially Optimal Wire-length Vectors) 

corresponds to a linear combination of distances between 

adjacent pins. Few pre-computed POWVs of each group 

are stored in a table. Associated with each POWV, one 

corresponding Steiner tree is stored called as Potentially 

Optimal Steiner Tree (POST).  

FOARS [36] is a Look-up table based five step 
heuristic, follows top-down approach and partitions the 

pins into subsets. OASG construction based on Octant 

partition of vertices guides the partitioning and captures 

the proximity of pins and corners of obstacles. Obstacle 

Penalized Minimum Spanning Tree (OPMT) is 

constructed by applying extended Dijkstra‟s and 

Kruskal‟s algorithm on OASG, in the case of major 

detour between vertices, an edge is penalized for the 

obstacle in its path in the form of weight on that edge. On 

the partitioned OPMT, Obstacle-Aware FLUTE 

constructs Obstacle Aware Steiner Tree (OAST) on the 

small degree nets satisfying Threshold value. 
Rectilinearization and Refinement generates OARSMT 

with an improved wire-length. OA-FLUTE uses OBTree 

data structure to accelerate the overlap checking with 

obstacles, this reduces runtime of FOARS by 59%. 

FOARS has better performance than [28] by 2.3% and 

[30] by 2.7%. FOARS runtime is slower compared with 

[31], [32]. 

3. Special cases of OARSMT design 

Efforts were made to design OARSMT with Electrical 

and Electronic features and Genetic Algorithmic 

simulation. Designs showed good performance in 
comparison with the peer algorithmic designs, but their 

design complexity increases with increasing number of 

terminals and obstacles in the routing areas of ICs.  

3.1 Circuit based approach 
CDCTree [22] is a four step heuristic based on Current 

Driven Circuit model, circuit takes the topology of Escape 

graph, edges being replaced with resistors and terminals 
by current source. Algorithm makes use of Coulomb‟s 

law (repulsion of like charges), DC analysis is performed 

for current distribution on the circuit and edges with 

minimum current are selected to construct OARSMT with 

shorter wirelength. For test cases with 50 terminals 

CDCTree achieves shorter wirelength than An-

OARSMan. 

3.2 Circuit simulation based approach 

cktSteiner[23] uses RC-network to model a Routing 

graph, here terminals are input-ports with unit impulse 

current source and hanan nodes are output-ports. Global 
Routing Graph (GRG) formally a unit tile hanan grid is 

mapped into RC mesh; edges are modeled as unit 

resistors, vertex of GRG is connected to ground via a unit 

capacitor and unit resistor in parallel. Impulse current are 

applied at terminals, a hanan node becomes a Steiner 

point if its voltage response reaches peak value at the 

earliest. In an iterative process, one or block of Steiner 

points can be added to build RSMT this give rise to two 

algorithms 1-cktsteiner, B-cktsteiner respectively. 

cktSteiner applies to both RSMT and OARSMT  with a 

slight runtime difference. Circuit simulation is done on 

MATLAB; compared with An-OARSMan, 1-cktSteiner 
reduces 6.12% of wire-length for large test cases; B-

cktSteiner gets average speedup of 352X with similar 

wire-length. 

3.3 Genetic algorithm (GA) 

Genetic algorithms give optimized solutions to problems 

based on natural concept of birth, inheritance, genetic-

codes, chromosomes, mutation, etc.  

[18] presents a Genetic Algorithm (GA) and compared its 

performance with a Greedy Heuristic.GA encodes 

candidate RSTs in terms of their underlying Spanning tree 

edges, each augmented with a Steiner point. A spanning 
tree of n points has n-1 edges which are taken as the 

length of a Chromosome. A Chromosome is a list of 

triples: two vertices describe a spanning tree edge and a 

Steiner point for the edge. Chromosome‟s fitness is the 

length of the RST it represents. GA operators like – 

Crossover and Mutation are constrained to generate only 

valid RSTs whose vertical and horizontal segments do not 

intersect obstacle. GA operator Crossover generates one 

offspring from two parents. GA operator Mutation 

modifies a single parent chromosome; it removes a 

random edge pair from the parent, and then selects a new 

edge pair and Steiner point at random to reconnect the 
tree. A variation of Kruskal‟s algorithm generates random 

RST for the GA‟s initial population. Greedy heuristic for 

RST with obstacles imitates Kruskal‟s algorithm. Results 

shows that GA consistently generated shorter RST than 

the Greedy heuristic for tests on 45 instances of up to 469 

pins and 325 obstacles. 

 3.4 Parallel techniques 
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Many algorithms proposed to solve the OARSMT 

problem are Sequential, rather than Parallel. Multi-core 

processors and Computer systems are widely available 

and inexpensive. Developing parallel algorithms allows 

the exploitation of the computational power of Shared-

memory multi-core systems or Array processors (group of 
processing elements).Considerable speed-up can be 

achieved while executing the parallel program which uses 

threads and OpenMP functions. 

[9] Proposed, parallel techniques for computing 

rectilinear shortest paths avoiding obstacles. 

CREWPRAM model processors computed shortest paths 

in O(log2n) time for all the three cases. Case1, when 

source and destination pins are on the boundary of convex 

obstacle polygon, then the model requires O (n2/ log2 n) 

processors. Case2, when source is an obstacle vertex and 

destination is a vertex pin, then the model requires O (n2/ 
log n) processors, and case3, if both source and 

destination are obstacle vertices model takes O (n2) 

processors. Noticed that Single processor obtains the path 

length between query points in a constant time, while O 

(n/log n) processors retrieve the shortest path in 

logarithmic time. If the query points are arbitrary, then 

single processor takes O(logn) time. Parallel technique 

use Staircase separators or convex paths for fast 

computations.  

[40] Proposed a parallel algorithm for constructing 
OARSMT on a gridded xy-plane based on Watanabe‟s 

Steiner tree construction algorithm [7] suitable for use on 

a shared-memory multi-core system. Algorithm is based 

on Maze routing and a two phase repetitive double front-

wave expansion. Algorithm uses two parallelized 

procedures, which efficiently reduces the program 

execution time, namely PARALLEL-CONNECT() used 

to connect a Steiner point with other points within a 

region and PARALLEL-CLEANUP() a process of 

resetting distance numbers of grid points in maze routing. 

Algorithm is implemented in C++ with the use of 
OpenMP functions. Program achieves 23% speed-up on 

average while running on a multi-core workstation and 

generates very short wires.  

III. Comparison of OARSMT design approaches 

Table gives the comparison of key features and performance parameters like runtime and wire-length estimations of 

different OARSMT designs. 

Algorithm and its Underlying 

concepts 

Performance and Time 

complexity 

Salient features of OARSMT designs 

[10] Exact algorithm. Multi-terminal 
net, Escape graph, Greedy k-

Steinerization 

Escape graph generation in  
O(max {n, m log m }), G3S 

heuristic time complexity is O(k2n), 
G4S is O(k3n2). Worst case Steiner 
ratio is 2 

Transforms geometric problem into graph problem of input 
size. Optimally routes multi-terminal net by exact and 

heuristically by GkS method. Batching technique speeds up 
Steinerization heuristics.  

FORst [19] -Partitioning of terminals, 
Hyper graph of terminals and FSTs, 
ACO and Greedy FST for routing 
subtrees, Detour technique 

max (O(n3),O(n2 e log (e))) n is 
number of terminals; e is number of 
edges of obstacles. 
 

Handles large scale cases and concave polygonal obstacles 
with a short running time. 
Two routing algorithms ACO-RSMT and GFST-RSMT 
works well on small and large scale cases. Their cooperation 
is a trade-off between CPU-time and solution quality.   

An OARSMan [20]  
-Track Graph, ACO search heuristics, 
greedy OP-distance metric 

Optimal solution for instances less 
than 7 terminals. cases with 100 
terminals take 30sec. 

Handles complex obstacles. Track graph has reduced search 
space. Good length performance for small cases. 

CDCTree[22] -Current Driven Circuit, 
Escape graph, Coulomb‟s law, 
Kirchoff‟s law 

Major time is spent in solving linear 
equations. 

Efficient for routing nets with less than 50 terminals and 
Not suitable for Large cases. Practical for Routing 
applications.  

λ-OAT [24] -Obstacle-Avoiding 
Constrained Delaunay triangulation; 
Zonal Combination 

O(nlogn), n is sum of  terminals and 
corner points of obstacles. 

Global search by λ-OAT provide better solution for Large 
cases than FORst and Speeds up to 30Kx.  
Longer wire-length for Small cases with few obstacles as 
edge sharing is limited.  

Fast and Stable algorithm [25] -
Partitioning of terminals, Set of Sub-
Trees, ACO, Rectilinearization and 
Refinement. 

runtime is small for large cases, 
compared  to λ-OAT algorithm takes 
4.2 sec and 54.37% less wire-length  

Greedy Rectilinearization shares edges; Refinement 
improves wire-length by eliminating U-shape paths. Good 
solution quality makes it suitable for routing process. But 
for large cases Spanning graph loses information. 

[27] -Multi-pin variant of Maze 
routing, maze propagation uses 
simplified Hanan grid, maze routing 
step uses Heap data structure. 

Improved wirelength and running 
time than basic Maze routing 

 Handles multi-pin net, complex obstacles, large scale cases 
taking less runtime and storage disproves the drawbacks of 
traditional Maze routing. Post-processing improves 
wirelength but Large cases increases Maze searching space. 

[28] -Obstacle Avoiding Spanning 
graph with “essential edges”, 

Dijkstra‟s & Prim‟s algorithm, local & 
U-shape pattern refinement. 

OASG has O(nlgn) edges. Empirical 
run time is O(n 1.46 ). Theoretical 

time complexity is O( n3) in worst 
case, O(n2lgn) in random case.  

 “essential” edges in OASG guarantees to find an optimal 
OARSMT for  two-pin and higher-pin nets;  

OASG with less number of edges ensures efficient 
searching and processing; local and U-shaped pattern 
Refinement schemes- reduce total wire-length.  

EBOARST[30] -Edge-based 
heuristics, Sweep line algorithm, 
Quadrant partition of plane, terminal 
forest, extended Dijkstra–Kruskal, 

O(nlogn) Algorithm achieves 16.56 
time speedup and only 0.46% longer 
on average. OASG and MTST are 
O(nlogn) 

45degree sweep by Sweep line algorithm. 
Edge-based heuristic enables both local and global 
refinements so small length Steiner trees is generated.  
Segment translation refinement enhances the quality of 
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Edge substitution.  OARST 

[31] Path-based algorithm. -Critical 
paths, Shortest Path Maps, Multi-

Source SPs, Wave-front method 

O(n) critical paths in O(n log n)  
O(nlogn) algorithm achieves best 

speedup and 1.1% longer on average 

Critical paths guarantee the existence of optimal solutions. 
Overlapping of paths and refinement schemes improves 

solution quality. 

[32] [39] Steiner point based 
framework. -Voronoi graph, Shortest 
Path Region (SPR), Steiner point 
location method. 

 OAVG of O(n) vertices and edges 
in O(nlogn) time. Best solution 
quality in Θ(nlogn) empirical time. 
 

Steiner point location method generates desirable Steiner 
point candidates that cause NP-completeness of OARSMT 
problem. OAVG integrates the effectiveness and the 
efficiency of routing graphs. 

[34] Weighted Lee algorithm. -Lee 
algorithm, extended Hanan grid, 

Minimum Convex Polygon (MCP). 

MCP(V) in O(nlogn), algorithm 
runtime is O (n2(n+m)2 log (n+m)), 

n  terminals, m is number of vertices 
of obstacles & boundary. 

Routing area is a Weighted Hanan grid. 
MCP(V) restricts routing area. Maze/Lee algorithm 

considers boundary components. Large cases increase 
complexities. 

FOARS [36] Fast Look-up table, 
Octant partition, Sweep-line algorithm, 
Dijkstra‟s, Kruskal‟s algorithms, 
Obstacle aware-FLUTE, OBTree data 
structure. 

OASG has O(n) edges; FOARS has 
similar wirelength as [27][31] [32]. 
FOARS runtime is 84% faster than 
[30] on average and 46 times and 
123 times faster than [27], [28]. 

OARSMT follow obstacle boundary on necessity and 
avoids congestion while routing large nets. At top-level 
OASG guide partitioning. FLUTE is recursively called for 
local optimization of OAST. Refinement reduces wire-
length by 1 to 2%. Obstacle Aware-FLUTE is less effective 
for high degree nets and dense obstacle region. 

[37] Geo-Steiner approach.  
FST generation and FST 
Concatenation, four Virtual points, 
Reduced Escape graph, ILP 
formulation. 

For large cases, FST concatenation 
phase dominates the total run time. 
On average, 29.3% reduction of 
FSTs  achieved by  pruning process 
in 1.7s 

for small cases -running time of FST generation is 
Comparable to FST concatenation phase.  
Pruning process is effective for small nets. Lower bound by 
LP relaxation is very tight and Separation procedure 
efficiently finds ILP violated constraints. 

[40] Parallel algorithm. Maze routing, 
Double front-wave expansion, Shared-

memory multi-core system, OpenMP  

On average 23% speed-up achieved 
when parallel program executed 

using four threads on Multi-core  

Parallel algorithm exploits the computational power of 
shared-memory multi-core systems. Minimizes total wire 

length. Does not use Refinement techniques 

ObSteiner [41] Exact algorithm. -
Geosteiner approach, Essential edge 
with one virtual point, Virtual graph, 
Pruning procedure, Incremental 
approach, ILP formulation. 

Total run time is dependent on the 
number of obstacles, more obstacles 
lead to more iterations of algorithm.  
Instances with less than 500 
Obstacles were solved in minutes. 

Handles complex obstacles. Pruning procedure eliminates 
useless FSTs leading to significant improvement in total run 
time. ILP constraints on FST and virtual point minimize the 
total wire length. For small benchmarks, the benefit of using 
Pruning procedure and Incremental approach is limited 

 

IV. CONCLUSION 

Paper discusses OARSMT design approaches and makes 

a comparative study of the features, wire-length and 

runtime performance of OARSMT algorithms. Some of 

the interesting findings of the study are, 

OARSMan[20],[25]based on ACO show good time and 

wire-length performance for small scale cases, similarly 

FORst[19],λ-OAT[24] for large scale cases. 

ObSteiner[41] and FOARS[36] based on the extensions of 

popular RSMT methods Geo-Steiner and FLUTE gives 

quality solutions and handles large cases. [27] gave a 
multi-terminal variant of Maze routing which has good 

space and time responses. [31] Path-based algorithm, a 

unique method that avoids construction of routing graph 

by directly generating critical paths. Steiner point 

selection based algorithm [32] gives more importance for 

the generation of the Steiner point candidates while 

handling obstacles. Exact algorithms [38] [41] based on 

Geo-Steiner handles complex obstacles without dissecting 

them and provide quality solutions. Parallel algorithms 

[40] are proposed to solve OARSMT problems at higher 

speed on Multi-core parallel systems. As there is 
continuous advancement in the VLSI technology, there is 

a need for the best performing OARSMT design; this can 

be achieved by suitably integrating or improving the key 

features of the existing algorithms or designs. 
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